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We study a one-dimensional granular system in which each particle is excited by white noise, with inelastic
interactions between the particles. When the coefficient of restitution,h, is one, the particles are uncorrelated.
As h decreases, long-range correlations between the particles develop. A computer simulation of the system
shows a steady-state, power-law particle-particle correlation function, which depends strongly onh. We give
simple analytic arguments for the correlations. We also present an ‘‘equation of state’’ for the system of
particles, which relates the noise amplitude to the particle density and the average particle speed.
@S1063-651X~96!51007-X#

PACS number~s!: 05.20.Dd, 47.50.1d, 81.05.Rm, 83.70.Fn

With a few notable exceptions, our understanding of sys-
tems not in equilibrium is far from complete. Certainly, there
is no general framework comparable to equilibrium statisti-
cal mechanics with which to study the behavior of nonequi-
librium systems. Models of driven dissipative systems in-
cluding granular media have been the subject of considerable
recent interest, in part because of insights that such systems
can provide into nonequilibrium behavior@1,2#. Granular
materials are also of interest because they demonstrate a state
of matter with properties reminiscent of both solids and liq-
uids @3#. Other properties of granular materials such as heap-
ing and the appearance of avalanches, however, are in
marked contrast with the behavior of both macroscopic liq-
uids and solids. Very recent studies of the effects of inelastic
collisions in granular media and dissipative gases have
shown surprising dynamics, including clustering@4–8#, in-
elastic collapse@6,8#, and the breakdown of macroscopic hy-
drodynamics@9#. Here, we study a continuously driven or
heated one-dimensional dissipative gas and show that inelas-
tic collisions lead to pronounced, long-range spatial correla-
tions in the absence of any long-range forces between the
particles ~Fig. 1!. Despite these correlations, we find that
aspects of this nonequilibrium system can be described by a
simple equation of state based on a global energy balance.

Clustering is often observed when granular media are
sheared@5,10,11#. In general, clustering is driven by inelastic
collisions. When two particles collide inelastically, they dis-
sipate energy, slow down, and hence remain close to one
another. Here we investigate numerically the effect of such
inelastic collisions in a one-dimensional system of indepen-
dent, pointlike particles that are excited by a thermal reser-
voir. We show that clustering, as evidenced for instance by

the two-point correlation function, occurs even in the ab-
sence of any other forces between the particles. There have
been several studies of dissipative systems that are started in
a ‘‘hot’’ state and then slowly cool@4–8#, since there is no
energy input. In one and two dimensions, these can show
‘‘inelastic collapse’’@6#. The novel feature of the collapse is
that for coefficients of restitutionh below a critical value
hc , the kinetic energy is dissipated in a finite time. For
h.hc , the kinetic energy dissipates gradually.

In our model, we consider a continuous input of energy
locally to each particle, as well as dissipative collisions.
Thus, for a coefficient of restitutionh,1, the system even-
tually settles down to a ‘‘steady state.’’ Forh>1, this steady
state looks, at least superficially, like an ideal gas, in which
there are no significant spatial correlations between the par-
ticles. However, we show that ash is reduced, even in the
absence of any long-range interactions, the system develops
a structure factor that is characteristic of an equilibrium sys-
tem with long-range interactions. In particular, the dissipa-
tive interactions lead to a correlation functiong(x) that is no
longer a constant as it would be for an ideal gas, but shows a
peak near the origin. Furthermore, this enhancement of
g(x) nearx50 is of a power-law form. Thus, the system
behaves as if there were long-range attractive interactions
between the particles. Only in the limith→1 does the cor-
relation function become uniform. Ash decreases,g(x) be-
comes more and more sharply peaked aboutx50.

Our system has two advantages over the more traditional
problem where energy flows into the system from the bound-
aries, either by shear@5,10,11# or by other means@8,7,9#.
The first is that the energy input to each particle is well
controlled, which avoids complications due to boundary ef-
fects and spatial gradients across the system. The second is
that since each particle is heated independently there is no
inelastic collapse.

We considerN point particles of unit mass,m51, con-
fined to a line of lengthL51 ~Fig. 1!. We use periodic
boundary conditions, so that the particles lie on a circle of
unit circumference. When two particlesi and j collide in this
one-dimensional system, the final~primed! velocities are
given in terms of the initial~unprimed! velocities by

FIG. 1. Snapshot of a system of particles that are uniformly and
individually heated. Periodic boundary conditions are used, and the
particles are pointlike. The system forms cool liquidlike clusters
surrounded by hot gaslike regions. As the coefficient of restitution
is reduced, these clusters become more pronounced.
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The main difference between this and previous studies of
dissipative gases is that each individual particle is ‘‘heated’’
at a constant rate. This is done by adding a random amount
to the velocity of each particle during a time stepDt. Thus
we write the usual Langevin equation

v i~ t1Dt !5v i~ t !1ArADt f ~ t !, ~2!

where f (t) is a random number chosen uniformly between
2 1

2 and
1
2 andr is a number proportional to the heating rate.

After the velocities are adjusted the system is transferred to
the center-of-mass frame, so thatv i→v i2 v̄, wherev̄ is the
average velocity of all the particles in the system. The algo-
rithm ~2! ensures that the velocities undergo a random walk,
while the transfer to the center-of-mass frame ensures that
the particle speeds do not increase indefinitely. It should be
emphasized that this transfer step is for convenience only,
since the properties of collisions do not depend on the abso-
lute speeds, only on the relative speeds. Before the heating
step, the kinetic energy of the system isK5 1
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wheredv i5ArADt f (t). The term linear indv i vanishes on
average, by symmetry, and the term12( i51

N (dv i)
2 is, on av-

erage 1
2rtN^ f 2&5 1

24rtN, hence our identification ofr with
the heating rate. It is convenient to introduce a quantity
V[ 1

24r , which is the energy input per unit time per particle.

Providedh,1, this system, started with some initial random
speeds, eventually reaches a steady-state configuration.

Qualitatively, the system appears to form liquidlike clus-
ters of high density surrounded by a gaslike ‘‘phase’’ of
lower density~Fig. 1!. In order to study this effect quantita-
tively, we introduce the two-particle correlation function
g(x). We select a particle and ask what is the density of
particles at distancex from it. Since our system is transla-
tionally invariant, the choice of origin is arbitrary. This, suit-
ably normalized, isg(x). For an ideal gas of point particles,
the answer isg(x)5 a constant. For a gas that has some
attractive potentialU(x) acting between the particles, the
answer is more complicated but, in general,g(x) will be
peaked aboutx50 and will decay to a constant asx→`.
For the dissipative gas discussed here, we findg(x) shows a
peak at the origin, even though we have no potential acting
between the particles. This peak is caused by the dissipation
effect discussed above and can be thought of as a steady-
state version of the collapse and clustering seen in dissipative
cooling gases@4,8,5–7#. As h→1 the structure becomes less
pronounced andg(x) approaches a constant. However, as
h becomes small,g(x) becomes very sharply peaked. Some
characteristic results are shown in Fig. 2. We find that the
correlation function depends only on the density and onh
and is independent of the heating rate. At least for smallx,
where the finite size of the system has little effect,g(x) can
be approximated by a power lawg(x);x2a(h). Herea(h)
is a monotonically increasing function ofh. In the limit of a
perfectly elastic systemh→1 anda→0. However, for per-
fectly inelastic systems whereh→0 we finda→ 1

2. For the
problem of interactions between twoisolated particles, a
scaling argument predicts a limiting exponent of1

3. This re-
sult can be understood as follows. Whenh is small the col-
lisions between particles are almost perfectly inelastic and
the particles lose almost all of their energy. The particles
only move away from each other because of the random
kicks induced by the heating. Thus we can consider a single
particle moving away from a wall and, subject to its velocity,
undergoing a random walk. We thus have^uv(t)u2&;t and

FIG. 2. A log-log plot of the two-point correlation function ver-
sus distance for three values of the coefficient of restitution for
N510 particles. Forh50.99 ~lowest curve! the correlation func-
tion is almost a constant. Forh50.5 ~middle curve! strong corre-
lations have developed, and forh50.01 ~upper curve! the function
is clearly a power law with exponent2 1

2. The correlations arise
because of the effect of inelasticity, i.e., when two particles collide
they move more slowly and hence stay near each other, thus caus-
ing a correlation. The correlation function is independent of the
heating rateV. The curve, at smallh is also a power law for other
values ofN, with a slope of2 1

2. Here we have superimposed data
from two heating rates that differ by a factor of 100,V50.0017 and
V50.17, and each point represents an average over 23105 colli-
sions.

FIG. 3. A test of theh dependence in the equation of state~5!.
Here we have plottedK3/2NL21V21 versus (12h2)21. As pre-
dicted by theory~5!, the relation is close to linear. Note that because
the scaling withN in ~5! is not precise, the lines for differentN are
not exactly superimposed. This effect is more pronounced in Fig. 4.
The data are points from the computer simulation and each point
represents an average over 106 collisions. The following pairs of
particle number and heating rate (N,V) were used:d, ~10,0.0017!;
s, ~20,0.0017!; 1, ~40,0.0017!.
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v;t1/2. The distance traveled from the wall in timet is then
x;*0

t v(t8)dt8;t3/2;v3. The density of a particle at any
point is just the inverse of the time it spends in that region,
i.e., v21, thusg(x);v21;x21/3, anda5 1

3. The fact that
a(0)5 1

2 is presumably caused by interactions between many
particles.

In spite of the nonequilibrium nature of the system, we
can write down an equation of state by a simple energy ar-
gument@12,13#. By ‘‘equation of state’’ we mean the rela-
tion between the heating rate, the number of particles, the
system size, and the kinetic energy of the particles. One pos-
sible approximation to the equation of state can be derived as
follows. Let us ignore numerical prefactors and correlations
between the particles. The average distance a particle must
move between collisions isL/(2N). Then, for particles that
have some average speedv, the time between a collision~for
each particle! is approximatelyt5 lL /(2N)]v21. Since there
are N/2 pairs of particles, the rate of collisions is
'(N/2)t215vL21N2. During each collision, an amount of
energy (12h2)v2 is dissipated. Thus the rate of energy dis-
sipation is approximately@13#

W5v3~12h2!L21N2. ~4!

However, the rate of energy input isVN. In the steady state
these must be equal. Thus we find an equation of state

K3/2~12h2!N5CVL, ~5!

whereK is the kinetic energy per particle andC is a numeri-
cal constant. The dependencies onK, V, andL are some-
what trivial since they can be derived independently by di-
mensional analysis. However, the dependence uponh and
especiallyN are less trivial. We can test how accurately this
equation describes the system by comparing it with the re-
sults of our computer simulation. The scaling of the kinetic

energy with the heating rate and the coefficient of restitution
are exactly as predicted by the theory~5! ~Figs. 3 and 4!. The
scaling withN is satisfactory,~Fig. 5! but at a small number
of particles there are significant variations from~5!. These
are clear in Fig. 4, where the data for different values ofN
have different slopes.

We can use the equation of state to obtain the force on a
wall placed at the boundary of a finite system. We assume
that the particles undergo perfectly elastic collisions with the
wall. The time-averaged forceF exerted by the particles is
the ‘‘pressure’’ for a one-dimensional gas. The current of
particles hitting the wall isJ5Nv/L. Each particle imparts
momentum 2v to the wall. Thus the time-averaged force is
F5rv2, wherer51/L is the linear density. Thus the rela-
tion between the force and the density is

F5V2/3r1/3~12h2!22/3. ~6!

Due to dissipation, this is very different from the result for
an ideal gas where the pressure is proportional to the first
power of the density.

In this paper we have discussed a simple one-dimensional
model of an excited dissipative gas. The system shows
steady-state clustering, or power-law correlations between
particles, and can be described by a simple equation of state.
The nontrivial correlation function implies that the particles
move as if interacting via a potential. There have been sev-
eral attempts to describe the average properties of dissipative
gases@12,13#. However, their full statistical mechanics, in-
cluding a theory of their correlation functions, analogous to
that for simple liquids, remains a problem for future re-
search.
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FIG. 4. A test of theV dependence in the equation of state~5!.
Here we have plottedK3/2NL21(12h2) versusV. As predicted by
theory ~5!, the relation is close to linear. Note that because the
scaling withN in ~5! is not precise, the lines for differentN are not
exactly superimposed. The circles are points from the computer
simulation and each point represents an average over 53106 colli-
sions. The following pairs of the particle number and coefficient of
restitution (N,h) were used:d, ~10,0.25!; s, ~10,0.55!; 1,
~20,0.55!; n, ~30,0.35!.

FIG. 5. A test of theN dependence in the equation of state~5!.
Shown is a log-log plot of K3/2VL21(12h2) versus
1/N.The theory~5! would predict a line of slope unity. The line
of best fit ~shown! has a slope of 1.07. The circles are points
from the computer simulation and 105 collisions are
averaged over for each point. The following pairs of heating
rate and coefficient of restitution (V,h) were used:
(0.0017,0.25),(0.20,0.85),(0.20,0.35),(0.74,0.35).
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